第一节 通讯数据地址定义

PC6000/PE6000 通讯数据可分为功能码数据、非功能码数据,后者包括运行命令、运行状态、运行参数、告警信息等。

1.1 功能码数据

功能码数据为变频器的重要设置参数, PC6000/PE6000 有 P 组和 A 组功能参数, 参数群组如下:

PC6000/ PE6000. 功能码数据	P组(可读写)	P0、P1、P2、P3、P4、P5、P6、P7、P8、P9、 PA、PB、PC、PD、PE、PF
	A 组(可读写)	A0、A1、A2、A3、A4、A5、A6、A7、A8、A9、 AA、AB、AC、AD、AE、AF

功能码数据通讯地址定义如下:

1、 当为通讯 读取功能码数据时,对于 P0~PF、A0~AF 组功能码数据,<u>其通讯地址高十六位</u>直接为功能组编号,低十六位直接为功能码在功能组中序号,举例如下:

P0-16 功能参数: 其通讯地址为 F010H,其中 F0H 代表 P0 组功能参数, 10H 代表功能组中序号 16 的十六进制数据格式。

AC-08 功能参数: 其通讯地址为 AC08,其中 ACH 代表 AC 组功能参数, 08H 代表功能码 在功能组中序号 08 的十六进制数据格式。

2、当为通讯 写入功能码数据时,对于 P0~PF 组功能码数据,其通讯地址高十六位,根据是否写入 EEPROM,区分为 00~0F 或 F0~FF,低十六位直接为功能码在功能组中序号,举例如下:

写功能在参数 P0-16:

需要写入 EEPROM 时,其通讯地址为 F010H,

不需要写入 EEPROM 时,其通讯地址为 0010H,

3、当为通讯 写入 EEPROM 数据时,,对于 A0~AF 组功能码数据,其通讯地址高十六位区分为 10~4F 或 A0~AF,低十六位直接为功能码在功能组中序号,举例如下:

写功能参数 AC-08:

需要写入 EEPROM 时,其通讯地址为 AC08H,

不需要写入 EEPROM 时,其通讯地址为 4C08H,

1.2 PC6000/PE6000 非功能码数据

PC6000/PE6000	状态数据 (可读)	U组监视参数、变频器故障描述、变频器运行状态
非功能码数据	控制参数 (可写)	控制命令、通讯设定值、数字输出端子控制、模拟输出 AO1 控制、模拟输出 AO2 控制、高速脉冲(FMP)输出控制、参数初始化

1.2.1 状态数据

状态数据分为U组监视参数、变频器故障描述、变频器运行状态。

1、U 组参数监视参数

U 组监视数据描述见说明书相关 U0 组功能描述,其地址定义如下:

U0~UF, 其通讯地址高十六位为 70~7F,低十六位为监视参数在组中的序号, 举例如下:

U0-11, 其通讯地址为 700BH。

2、变频器故障描述

通讯读取变频器故障时,通讯地址固定为8000H,上位机通过读取该地址数据,可以获取当前变频器故障代码,故障代码描述见第五章P9-14功能码中定义。

3、变频器运行状态

通讯读取变频器运行状态时,通讯地址因定为 3000H,上位机通过读取该地焉数据,可以获取 当前变频器运行状态信息,定义如下:

变频器运行状态通讯地址	读取状态字定义		
	1: 正转运行		
3000H	2: 反转运行		
	3: 停机		

1.2.2 控制参数

控制参数分为控制命令、数字输出端子控制、模拟输出 AO1 控制、模拟输出 AO2 控制、高速脉冲(FMP)输出控制。

1.2.3 控制命令

在 P0-02(命令源)选择为 2: 通讯控制时,上位机通过该通讯地址,可以实现对变频器的启停等相关命令控制,控制命令定义如下:

控制命令通讯地址	命令功能	
	1: 正转运行	
	2: 反转运行	
	3: 正转点动	
2000H	4 : 反转点动	
	5: 自由停机	
	6: 减速停机	
	7: 故障复位	

1.2.4 通讯设定值

通讯设定值主要用户 PC6000/PE6000 中频率源、转矩上限源、VF 分离电压源、PID 给定源、PID 反馈源等选择为通讯给定时的给定数据,其通讯地址为 1000H,上位机设定该通讯地址值时,

其数据范围为-10000~10000,对应相对给定值-100.00%-100.00%

1.2.5 数字输出端子控制

当数字输出端子功能选择为 **20**: 通讯控制时,上位机通过该通讯地址,可以实现对变频器数字输出端子的控制,定义如下:

数字输出端子控制通讯地址	命令内容		
2001H	BiT0: DO1 输出控制 BiT1: DO2 输出控制 BiT2: RELAY1 输出控制 BiT3: RELAY2 输出控制 BiT4: FMR 输出控制 BiT5: VDO1 BiT6: VDO2 BiT7: VDO3 BiT8: VDO4 BiT9: VDO5		

1.2.6 模拟量输出 AO1、AO2,高速脉冲输出 FMP 控制

当模拟量输出 AO1、AO2, 高速脉冲输出 FMP 输出功能选择为 12: 通讯设定时,上位机通过该通讯地址,可以实现对变频器模拟量、高速脉冲输出的控制,定义如下:

输出控制通讯地址		命令内容
AO1	2002H	
AO2	2003H	0~7FFF 表示 0%~100%
FMP	2004H	

1.2.7 参数初始化

当需要通过上位机实现对变频器的参数初始化操作时,需要使用该功能。

如果 PP-00(用户密码)不为 0,则首先需要通过进行密码校验,校验通过后,在 30 秒后,上位机进行参数初始化操作。

通讯进行用户密码校验的通讯地址为 **1F00H**,直接将正确的用户密码写入该地址,则可以完成密码校验。

通讯进行参数初始化的地址为 1F01H,其数据内容定义如下:

参数初始化通讯地址	命令功能		
	1: 恢复出厂参数		
450411	2: 清楚记录信息		
1F01H	4: 恢复用户备份参数		
	501: 备份用户当前参数		

第二节 Modbus 通讯协议

PC6000/PE6000 系列变频器提供 RS485 通信接口,并支持 Modbus-RTU 通讯协议。用户可通过计算机或 PLC 实现集中控制,通过该通讯协议设定变频器运行命令,修改或读取功能码参数,读取变频器的工作状态及故障信息等。

2.1 协议内容

该串行通信协议定义了串行通信中传输的信息内容及使用格式。其中包括: 主机轮询(或广播)格式: 主机的编码方法,内容包括: 要求动作的功能码,传输数据和错误校验等。从机的响 应也是采用相同的结构,内容包括: 动作确认,返回数据和错误校验等。如果从机在接收信息时 发生错误,或不能完成主机要求的动作,它将组织一个故障信息作为响应反馈给主机。

2.1.1 应用方式

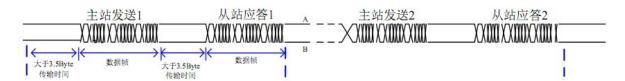
变频器接入具备 RS485 总线的"单主多从" PC/PLC 控制网络,作为通讯从机。

2.1.2 总线结构

(1) 硬件接口

PC6000 需在变频器上插入 RS485 扩展卡 PC60TX1 硬件;

PE6000、PV6000 自带通讯接口 A+、B-接线端子。

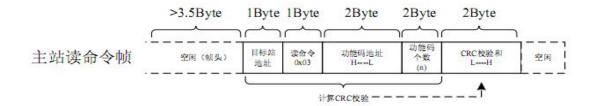

(2) 拓扑结构

单主机多从机系统。网络中每一个通讯设备都有一个唯一的从站地址,其中有一个设备作为通讯主机(PC 上位机、PLC、HMI 等),主机发动通讯,对从机进行参数读或写操作,其它设备在为通讯从机,响应主机对本机的询问或通讯操作。在同一时刻只能有一个设备发送数据,而其他设备处于接收状态。

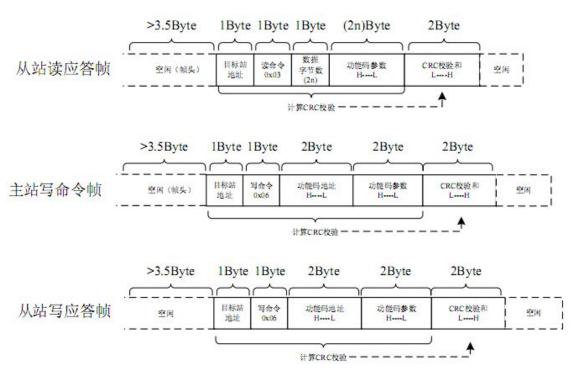
从机地址的设定范围为 1~247,0 为广播通信地址。网络中的从机地址必须是唯一的。

(3) 通讯传输方式

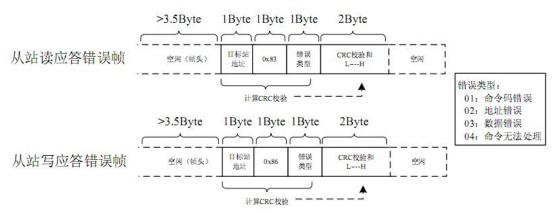
异步串行,半双工传输方式。数据在串行异步通信过程中,是以报文的形式,一次发送一帧数据,MODBUS-RTU协议中约定,当通讯数据线上无数据的空闲时间大于 3.5Byte 的传输时间,表示新的一个通讯帧的起始。



变频器内置的通信协议是 Modbus-RTU 从机通信协议,可响应主机的"查询/命令",或根据主机的"查询/命令"做出相应的动作,并通讯数据应答。


主机可以是指个人计算机 (PC),工业控制设备或可编程逻辑控制器 (PLC)等,主机既能对某个从机单独进行通信,也能对所有下位从机发布广播信息。对于主机的单独访问"查询/命令",被访问从机要返回一个应答帧频;对于主机发出的广播信息,从机无需反馈响应给主机。

2.1.3 通讯资料结构


Modbus 协议通讯数据格式如下,变频器只支持 Word 型参数的读或写。对应的通讯读操作命令为 0x03: 写操作命令为 0x06,不支持字节或位的读写操作:

理论上,上位机可以一次读取连续的几个功能码(即其中 n 最大可达 12 个),但要注意不能跨过本功能码组的最后一个功能码,否则会答复出错。

若从机检测到通讯帧错误,或其他原因导致的读写不成功,会答复错误帧。

2.1.4 数据帧字段说明:

帧头 START	大于 3.5 个字符传输时间的空闲		
从机地址 ADR	通讯地址范围: 1~247; 0=广播地址		
命令码 CMD	03: 读从机参数; 06: 写从机参数		

功能码地址 H	变频器内部的参数地址, 16 进制表示;分为功能码型和非功能码型(如运行状态参数、
功能码地址L	运行命令等)参数等,详见地址定义。 传送时,高字节在前,低字节在后
功能码个数 H	本帧读取的功能码个数,若为 1 表示读取 1 个功能码。传送时,高字节在前,低字节在后。
功能码个数 L	本协议一次只能改写1个功能码,没有该字段。
数据 H	应答的数据,或特写入的数据,传送时,高字节在前,低字节在后。
数据 L	一点一种,这种一个的数据,反应的,同于自己的,属于自己的。
CRC CHK 高位	检测值: CRC16 校验值。传送时,高字节在前,低字节在后。
CRC CHK 低位	计算方法详见本节 CRC 校验的说明。
END	3.5 个字符时间

2.1.5 CMD 校验方式:

校验方式——CRC 校验方式: CRC (Cyclical Redundancy Check)使用 RTU 帧格式,消息包括了基于 CRC 方法的错误检测域。CRC 域检测了整个消息的内容。CRC 域是两个字节,包含 16 位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息 CRC,并与接收到的 CRC 域中的值比较,如果两个 CRC 值不相等,则说明传输有错误。

CRC 是先存入 0xFFFF, 然后调用一个过程将消息中连续的 8 位字节与当前寄存器中的值进行处理。仅每个字符中的 8Bit 数据对 CRC 有效, 起始位和停止位以及奇偶校验位均无效。

CRC 产生过程中,每个 8 位字符都单独和寄存器内容相异或 (XOR),结果向最低有效位方向移动,最高有效位以 0 填充。LSB 被提取出来检测,如果 LSB 为 1,寄存器单独和预置的值相异或,如果 LSB 为 0,则不进行。整个过程要重复 8 次。在最后一位(第 8 位)完成后,下一个 8 位字节又单独和寄存器的当前值相异或。最终寄存器中的值,是消息中所有的字节都执行之后的 CRC 值。

CRC 添加到消息中时, 低字节先加入, 然后高字节。 CRC 简单函数如下:

个 8 位字节又单独和寄存器的当前值相异或。最终寄存器中的值,是消息中所有的字节都执行之后的 CRC 值。

CRC 添加到消息中时,低字节先加入,然后高字节。CRC 简单函数如下:

```
unsigned int CRC16_CHK(unsigned char *data, unsigned char length)
{
   int j = 0;
   unsigned int reg_crc = Oxffff;
   while(length--)
   {
       reg_crc ^= *data++;
       for(j=0;j<8;j++)
       {
            if(reg_crc & Ox01)
            {
                reg_crc = (reg_crc >> 1) ^ Oxa001;
            }
            else
            {
                 reg_crc = reg_crc >> 1;
            }
        }
        return reg_crc;
}
```

2.1.6 功能码参数地址标示规则:

读写功能码参数(有些功能码是不能更改的,只供厂家使用或监视使用): 以功能码组号和标号为参数地址表示规则:

高位字节: P0~PF (P组)、A0~AF (A组)、70~7F (U组) 低位字节: 00~FF

例如: 若要范围功能码 P3-12,则功能码的访问地址表示为 F30CH

注意:

PF 组: 既不可读取参数,也不可更改参数;

U组: 只可读取,不可更改参数。

有些参数在变频器处于运行状态时不可更改;有些参数不论变频器处于何种状态,均不可更改; 更改功能码参数,还要注意参数的范围、单位及相关说明。

功能码组号	通讯访问地址	通讯修改 RAM 中 功能码地址
P0∼PE 组	0×F000∼0×FEFF	0 × 0000 \sim 0 × 0 EFF
A0~AC 组	0×A000∼0×ACFF	0×4000∼0×4CFF
U0 组	0×7000∼0×70FF	只读,不可写

注意:

- I、由于 EEPROM 频繁被存储,会减少 EEPROM 的使用寿命,所以,有些功能码在通讯的模式下,无须存储,只要更改 RAM 中的值就可以了。
- 2、如果为P组参数,要实现该功能,只要把该功能码地址的高位F变成0就可以实现。如果为A组参数,要实现该功能,只要把该功能码地址的高位A变成4就可以实现。

写入 RAM 相应功能码地址表示如下:

高位字节: 00~0F(P组)、40~4F(A组)

低位字节: 00~FF

例如:功能码 P3-12 不存储到 EEPROM 中,地址表示为 030CH;

功能码 A0-05 不存储到 EEPROM 中, 地址表示为 4005H;

注意:

该地址表示只能做写 RAM,不能做读的动作,读时,为无效地址。 对于所有参数,也可以使用命令码 07H 来实现该功能。

2.1.7 停机/运行参数部分:

参数地址	参数描述	参数地址	参数描述
1000H	通信设定值(十进制) -10000~10000	1010H	PID 设置
1001H	运行频率	1011H	PID 反馈
1002H	母线电压	1012H	PLC 步骤
1003H	输出电压	1013H	输入脉冲频率, 单位 0.01kHz
1004H	输出电流	1014H	反馈速度,单位 0.1Hz

1005H	输出功率	1015	剩余运行时间
1006H	输出转矩	1016	Al1 校正前电压
1007H	运行速度	1017	Al2 校正前电压
1008H	DI 输入标志	1018	Al3 校正前电压
1009H	DO 输出标志	1019	线速度
100AH	Al1 电压	101A	当前上电时间
100BH	Al2 电压	101B	当前运行时间
100CH	Al3 电压	101C	输入脉冲频率,单位 1Hz
100DH	计数值输入	101D	通讯设定值
100EH	长度值输入	101E	实际反馈速度
100FH	负载速度	101F	主频率 X 显示
		1020	辅频率Y显示

注意:

- 1、通信设定值是相对值的百分数,10000 对应 100.00%,-10000 对应-100.00%。
- 2、对频率量纲的数据,该百分比是相对最大频率(P0-10)的百分数;对转矩量纲的数据,该百分比是 P2-10、A2-48、A3-48、A4-48(转矩上限数字设定,分别对应第一、二、三、四电机)。

控制命令输入到变频器: (只写)

命令字地址	命令功能		
	0001: 正转运行		
	0002: 反转运行		
	0003: 正转点动		
2000H	0004: 反转点动		
	0005: 自由停机		
	0006: 减速停机		
	0007: 故障复位		

读取变频器状态:(只读)

状态字地址	状态字功能		
	0001: 正转运行		
3000H	0002: 反转运行		
	0003: 停机		

参数锁定密码校验: (如果返回为8888H,即表示密码校验通过)

密码地址	输入密码的内容	
1F00H	****	

2.1.8 数字输出端子控制: (只写)

命令地址	命令内容
2001Н	BITO: DO1 输出控制 BIT1: DO2 输出控制 BIT2: RELAY1 输出控制 BIT3: RELAY2 输出控制 BIT4: FMR 输出控制 BIT5: VDO1 BIT6: VDO2 BIT7: VDO3 BIT8: VDO4 BIT9: VDO5

2.1.9 模拟输出 AO1 控制: (只写)

<u> </u>	4/
命令地址	命令内容
2002H	0~7FFF 表示 0%~100%

2.1.10 模拟输出 AO2 控制: (只写)

命令地址	命令内容
2003H	0~7FFF 表示 0%~100%

2.1.11 脉冲 (PULSE) 输出控制: (只写)

	M+ \/\¬/
命令地址	命令内容
2004H	0~7FFF 表示 0%~100%

2.2 变频器故障描述

变频器故障地址	变频器故障信息		
8000H	0000: 0001: 0002: 0002: 0003: 位 0003: 0004: 0005: 0006: 0006: 0007: 0008: 0007: 0008: 0009: 0009: 0008: 0009: 0008: 0000E: 0000E: 0000E: 0000E: 0000E: 0000E: 0000E: 0000E: 00010: 00012: 0011: 0012: 0013: 0014: 0014:	0015: 参变电保短	

2.3 PD 组通讯参数说明

2.3 1 D 组造似多数优势				
	波特率	出厂值	600	
		个位: MODUBS 波特率		
Pd-00	设定范围	0: 300BPS 1: 600BPS 2: 1200BPS 3: 2400BPS 4: 4800BPS	5: 9600BPS 6: 19200BPS 7: 38400BPS 8: 57600BPS 9: 115200BPS	

此参数用来设定上位机与变频器之间的数据传输速率。注意,上位机与变频器设定的波特率必须一致,否则,通讯无法进行。波特率越大,通讯速度越快。

	数据格式	出厂值	0
Pd-01	设定范围	0: 无校验: 数排 1: 偶检验: 数排 2: 奇校验: 数排 3: 无校验: 数排	居格式<8,N,2> 居格式<8,E,1> 居格式<8,O,1> 居格式<8-N-1>

上位机与变频器设定的数据格式必须一致,否则,通讯无法进行。

Pd-02	本机地址	出厂值	1
	设定范围	1~247,0 为广播地址	

当本机地址设定为0时,即为广播地址,实现上位机广播功能。

本机地址具有唯一性(除广播地址外),这是实现上位机与变频器点对点通讯的基础。

Pd-03	应答延时	出厂值	2ms
	设定范围	0~2	20ms

应答延时:是指变频器数据接受结束到向上位机发送数据的中间间隔时间。如果应答延时小 于系统处理时间,则应答延时以系统处理时间为准,如应答延时长于系统处理时间,则系统处理完数据后,要延迟等待,直到应答延迟时间到,才往上位机发送数据。

Pd-04	通讯超时时间	出厂值	0.0 s
	设定范围	0.0 s (无效); 0.1~60.0s	

当该功能码设置为 0.0 s 时,通讯超时时间参数无效。

当该功能码设置成有效值时,如果一次通讯与下一次通讯的间隔时间超出通讯超时时间,系 统将报通讯故障错误(Err16)。通常情况下,都将其设置成无效。如果在连续通讯的系统中, 设置 次参数,可以监视通讯状况。

Pd-05	通讯协议选择	出厂值	0
	设定范围	0: 非标准的 Modbus 协议; 1: 标准的 Modbus 协议	

Pd-05=1: 选择标准的 Modbus 协议。

Pd-05=0: 读命令时,从机返回字节数比标准的 Modbus 协议多一个字节,

具体参见本协议"通讯资料结构"部分。

D 1 00	通讯读取电流分辨率	出厂值	0
Pd-06	设定范围	0: 0.01A;; 1: 0.1A	

用来确定通讯读取输出电流时, 电流值的输出单位。